

Beyond Single Emotion: Multi-label Approach to Conversational Emotion Recognition

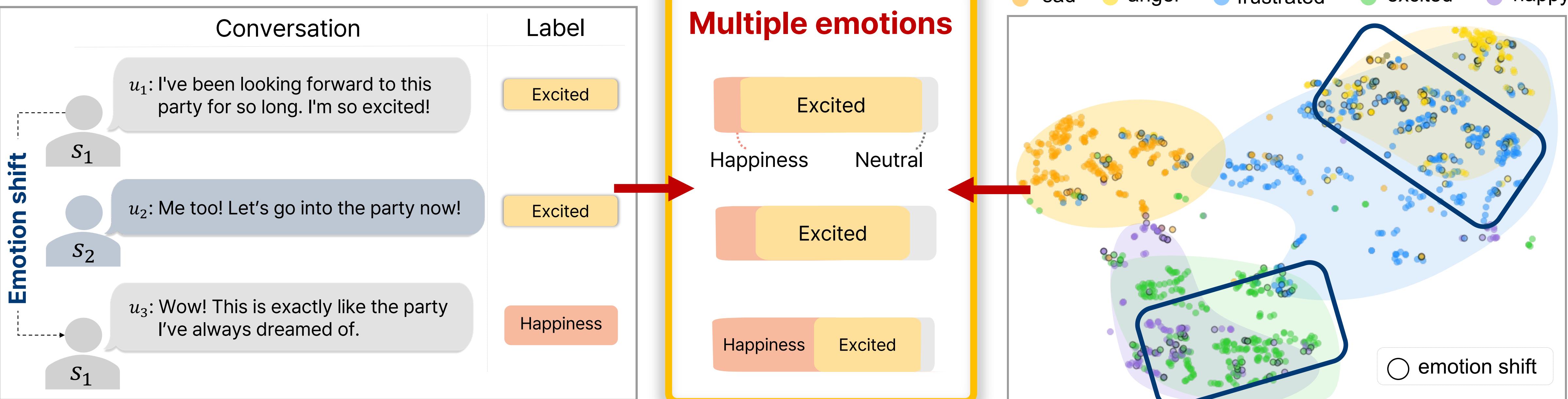
Yujin Kang, Yoon-Sik Cho
Chung-Ang university, South Korea

Sunday (Mar 2) 14:00
Humans and AI session
Oral presentation

Motivation

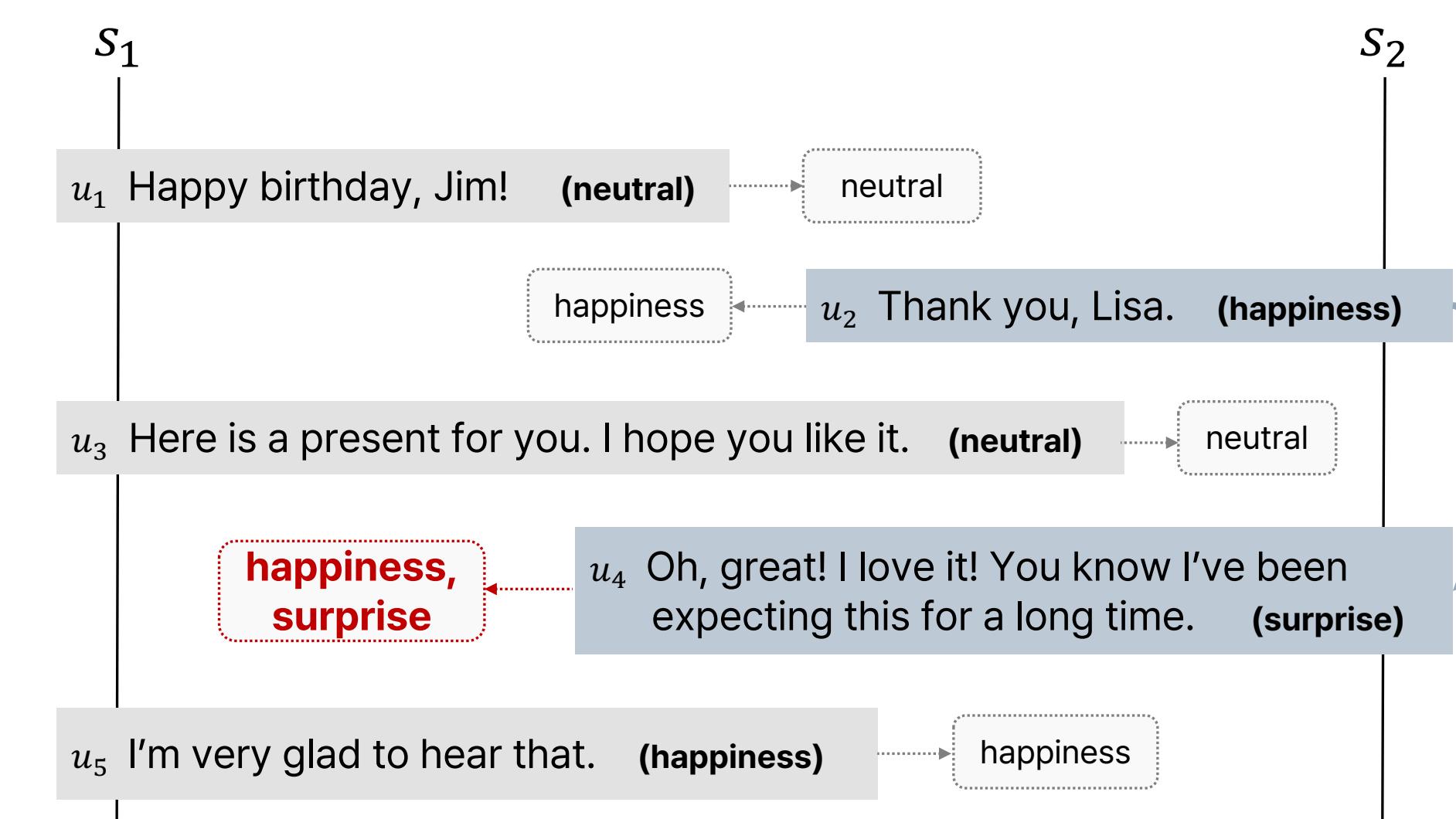
- Emotion recognition in conversation(ERC) task aims to identify the emotion at each utterance in a conversation
- ERC suffers from **emotion shift** and **confusing label**
- Annotating a single emotion label to an utterance overlooks the possibility of **multiple emotions**

Existing ERC dataset with single emotion label



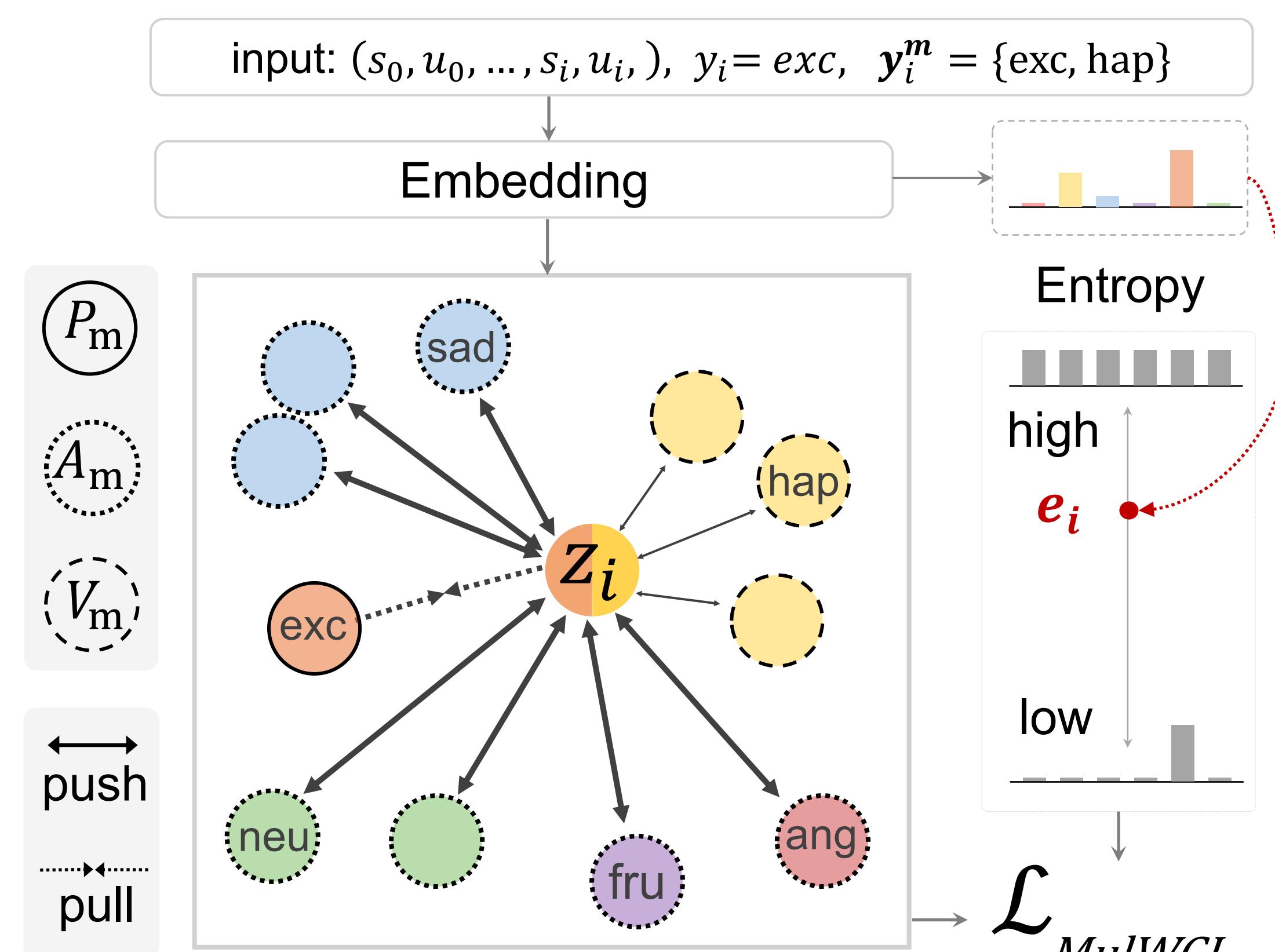
pseudo multi-emotion labels

- Target an utterance if consecutive utterances of same speaker have different.
- Combine emotions from consecutive utterances; otherwise, keep single label.



Methodology

Multi-label ERC (ML-ERC) Model



✓ **Challenge1:** finding the positive and negative pairs with multi-label vector is too complex

✓ We redefine the positive and negative sets

$$P_m(i) = \{p | y_p = y_i, p \neq i\} \quad A_m(i) = \{a | y_p \notin \mathbf{m}_i, a \neq i\} \quad V_m(i) = \{a | y_v \in (\mathbf{m}_i - y_i), a \neq i\}$$

✓ **Challenge2:** multiple emotions cause overlapping positive and negative pairs

✓ We design two weights from different perspectives

▪ Class-level weighted score

$$\mathcal{P}_{\text{multi}}(i) = \sum_{p \in P_m(i)} \exp(\text{sim}(\mathbf{h}_i, \mathbf{h}_p)/\tau),$$

$$\mathcal{N}_{\text{multi}}(i) = \sum_{a \in A_m(i)} \exp(\text{sim}(\mathbf{h}_i, \mathbf{h}_a)/\tau) + \sum_{v \in V_m(i)} \frac{(1 - (\text{sim}(\mathbf{r}_i, \mathbf{r}_v) + 1)/2)}{\text{class weight}} \exp(\text{sim}(\mathbf{h}_i, \mathbf{h}_v)/\tau)$$

▪ Instance-level weighted score

$$\mathcal{L}_{\text{MulWCL}}(i) = \underbrace{(1 - e_i)}_{\text{instance weight}} \left(\frac{-1}{|P_m(i)|} \log \frac{\mathcal{P}_{\text{multi}}(i)}{\mathcal{N}_{\text{multi}}(i)} \right)$$

✓ **Challenge3:** Our pseudo labeling scheme may still miss some utterances with multiple emotions

✓ We introduce soft multi-labels annotated to the potential utterances

$$p_i^{\text{soft}} = \begin{cases} \mathbf{o}_i & \text{if } \left(\sum_{j=1}^{|K|} \mathbf{1}(y_j^{\text{pseudo}} \neq 0) = 1 \right) \text{ and } (\gamma < e_i) \\ \mathbf{y}_i^{\text{pseudo}} & \text{otherwise} \end{cases}$$

The soft-labels are used as pseudo multi-labels for the data in the next epoch

Experiment

Model	EmoryNLP				MELD				IEMOCAP			
	M-F1(\uparrow)	W-F1(\uparrow)	AUC(\uparrow)	HL(\downarrow)	M-F1(\uparrow)	W-F1(\uparrow)	AUC(\uparrow)	HL(\downarrow)	M-F1(\uparrow)	W-F1(\uparrow)	AUC(\uparrow)	HL(\downarrow)
DialogueRNN	32.80	40.62	0.583	0.2388	34.37	56.61	0.612	0.1622	61.77	62.95	0.758	0.1440
DAG-ERC	36.47	41.33	0.586	0.3647	39.13	55.91	0.649	0.3038	58.34	57.97	0.772	0.2814
CoMPM	37.76	39.74	0.617	0.4018	39.80	55.12	0.714	0.2720	57.06	58.19	0.808	0.2803
MPLP	-	-	-	-	41.71	55.49	0.691	0.2466	59.39	59.99	0.811	0.2421
ML-ERC	38.69	41.56	0.630	0.2535	50.03	63.01	0.718	0.1250	68.58	69.17	0.815	0.1312

Results in multi-label classification

Loss	EmoryNLP				MELD				IEMOCAP			
	M-F1(\uparrow)	W-F1(\uparrow)	AUC(\uparrow)	HL(\downarrow)	M-F1(\uparrow)	W-F1(\uparrow)	AUC(\uparrow)	HL(\downarrow)	M-F1(\uparrow)	W-F1(\uparrow)	AUC(\uparrow)	HL(\downarrow)
BCE	34.57	37.12	0.597	0.2888	48.60	62.52	0.716	0.1256	65.41	66.28	0.816	0.1339
+ SupCon	36.63	39.38	0.620	0.2675	48.64	62.40	0.717	0.1258	65.35	67.23	0.796	0.1373
+ SCL	37.03	39.95	0.617	0.2632	48.97	62.76	0.712	0.1251	67.24	68.52	0.807	0.1325
+ JSCL	37.86	40.50	0.619	0.2674	49.88	62.28	0.714	0.1248	67.35	68.16	0.820	0.1339
+ JSPLC	33.46	35.77	0.589	0.2949	49.07	62.56	0.716	0.1261	66.18	66.98	0.821	0.1478
+ SLCL	17.27	23.23	0.503	0.3134	39.19	58.63	0.668	0.1496	61.12	62.11	0.792	0.1869
+ ICL	34.24	36.56	0.592	0.3058	49.02	63.10	0.720	0.1313	62.34	63.34	0.794	0.1698
+ MulWCL	38.05	40.88	0.624	0.2566	50.16	63.28	0.721	0.1260	68.42	68.96	0.817	0.1288

Comparisons against multi-label contrastive losses

Base Model	Objective	Confusing labels (\downarrow)				
		Peaceful - Happy	Powerful - Happy	Sad - Fear	Angry - Frustrated	Excited - Happy
RoBERTa	\mathcal{L}_{ERC}	34.14	38.96	28.67	26.39	40.77
	$\mathcal{L}_{\text{ML-ERC}}$	33.60 (-0.54)	32.37 (-6.59)	24.81 (-3.86)	23.24 (-3.15)	24.44 (-16.33)
CoMPM	\mathcal{L}_{ERC}	33.25	34.32	30.89	28.20	29.10
	$\mathcal{L}_{\text{ML-ERC}}$	26.94 (-6.31)	33.91 (-0.41)	24.97 (-5.92)	22.16 (-6.04)	25.66 (-3.44)
DAG-ERC	\mathcal{L}_{ERC}	24.07	35.94	25.52	19.16	33.78
	$\mathcal{L}_{\text{ML-ERC}}$	24.76 (+0.69)	32.15 (-3.79)	25.42 (-0.10)	18.95 (-0.21)	33.01 (-0.77)

The misclassified rate (lower the better) as confusing labels on ERC datasets

Conclusion

- We propose ML-ERC, for Multi-label classification to overcome the limitations of single-label emotion assignment.
- ML-ERC utilizes *MulWCL*, an objective function specialized for multi-emotion scenarios, and integrated a soft-labeling technique.
- The empirical results on existing task with single label support the efficacy of our approach, which is more effective in the most challenging settings: emotion shift or confusing labels.

Results in emotion shift data