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Motivation

- Emotion recognition in conversation(ERC) task aims to identify the emotion at each utterance in a conversation pseudo multi-emotion labels

* ERC suffers from emotion shift and confusing label
1) Target an utterance if consecutive utte-

» Annotating a single emotion label to an utterance overlooks the possibility of multiple emotions rances of same speaker have different.

ey CONfUsing labels .

Existing ERC dataset with single emotion label sad  anger o frustrated excited happy 2) Combine emotions from consecutive utte-
Conversation Label Multiple emotions rances; otherwise, keep single label.
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; Sl Happ|ness Neutral 1 S
ﬁ . # h | happiness - u, Thank you, Lisa. (happiness)
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ulJ us: Wow! This is exactly like the party . happiness, | u, Oh, great!|love it! You know I've been
N . I've always dreamed of. Happiness | L " e oe .\ surprise expecting this for a long time.  (surprise)
Happiness Excited
51 us I'm very glad to hear that. (happiness) > i happlness
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Methodology

Multi-label ERC (ML-ERC) Model v' Challengel: finding the positive and negative pairs with multi-label vector is too complex

We redefine the positive and negative sets
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Embeddin — v' Challenge2: multiple emotions cause overlapping positive and negative pairs
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! We design two weights from different perspectives
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— low v' Challenge3: Our pseudo labeling scheme may still miss some utterances with multiple emotions

‘neui { fang: | We introduce soft multi-labels annotated to the potential utterances
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Experiment——  ——————————————  Conclusion

EmoryNLP MELD IEMOCAP
Model
M-Flt) W-Fl¢#) AUC#® HLW M-Fl® W-Fl®) AUCh HLW M-Flg) W-Fl) AUCH) HL() . . .
Base Dataset ® — — —
DialogueRNN 32.80  40.62 0.583 0.2388 3437 5661 0612 0.1622 61.77 6295 0.758  0.1440 Modal Loss  EMORY MELD IEMOCAP We Propose ML ERC, for Multi-label classification to over
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. . . po . LERC 38.85 63.38 67.07
Results in multi-label classification PAGERC | Lwierc  39.02 6358  68.12 - L . o
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Loss N _ o . . N . N N L LERC - 65.45 65.03 . . . . .
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Results in emotion shift data

The misclassified rate (lower the better) as confusing labels on ERC datasets



