

GRIT: Guided Relational Integration for Efficient Multi-Table Understanding

Yujin Kang¹, Seong Woo Park², Yoon-Sik Cho¹
¹Chung-Ang university, ² Intellivix, Republic of Korea

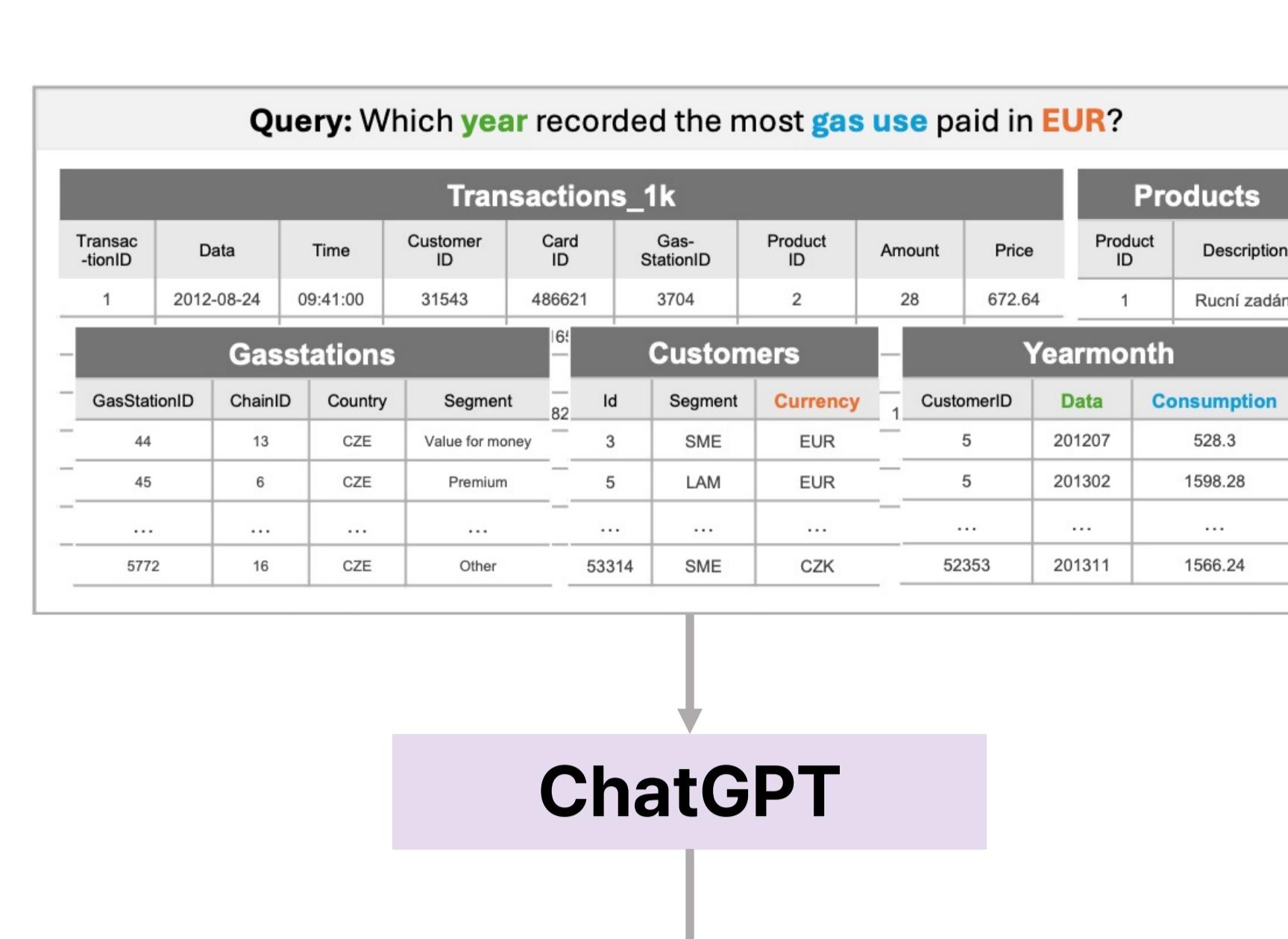
Motivation

Limited LLM Input size for Multi-table processing

- Multi-table processing requires integrating information from multiple tables
- Only a portion of the data can be processed when inputting actual databases

Lack of table structure understanding in LLMs

- Existing LLM training is primarily based on text data.
- Text is sequential and order-dependent, while tables are bi-directional and order-independent.



Golden
 Join Key columns
`Yearmonth.CustomerID, Customers.CustomerID`

Query Key columns
`Customers.Currency, Yearmonth.Date, Yearmonth.Consumption`

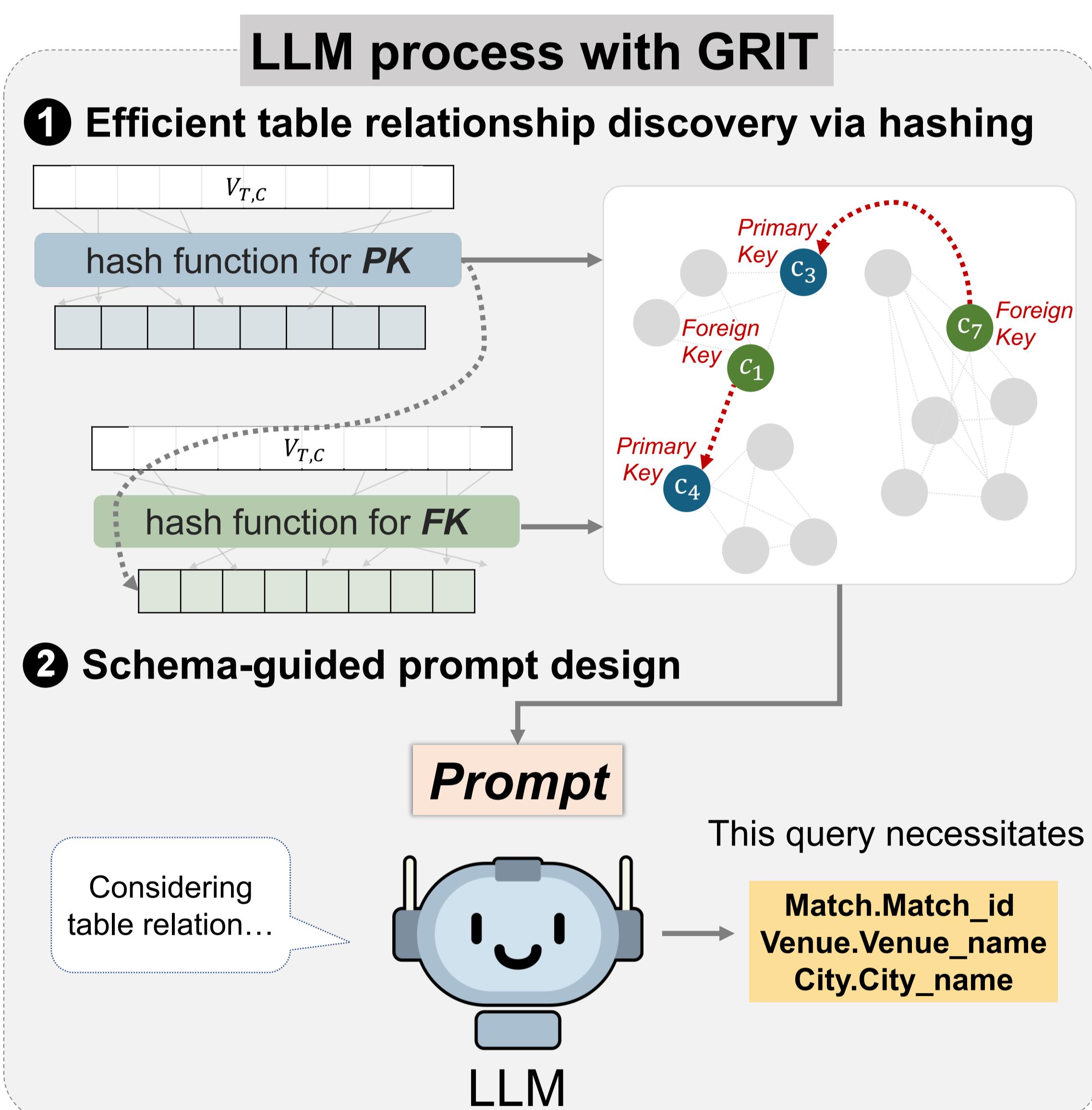
Predicted
 Join Key columns
~~`Transactions_1k.CustomerID, Yearmonth.CustomerID, Transactions_1k.GasStationID, Gasstations.GasStationID`~~
 Query Key columns
~~`Yearmonth.Date, Yearmonth.Consumption, Yearmonth.CustomerID`~~

- ✓ LLMs cannot process the full scale of large multi-table data
- ✓ LLMs struggle to understand table structures as effectively as text.

Therefore, to enable **effective** multi-table reasoning, the information needs to be transformed into a text form that LLMs can **efficiently** interpret.

Methodology

Let's efficiently extract the relationships among multi-tables and deliver them to the LLM in a form it can easily understand.



1 Efficient table relationship discovery via hashing

1. Primary key detection

- Use HyperLogLog (HLL) to approximate distinct counts efficiently in large-scale tables

2. Foreign key detection

To avoid false matches, combine multiple signals:

1) Containment score

- Use Bloom Filter for efficient membership testing

2) Cardinality ratio: $\text{unique}(FK) / \text{unique}(PK)$

- Use HyperLogLog to count uniqueness efficiently.

3) Name similarity: token overlap between column names

$$\phi_{\text{con}}(C, C_{\text{pk}}) = \frac{1}{|V_{T,C}|} \sum_{v \in V_{T,C}} \mathbf{1}\{BF(v) = 1\}$$

$$\phi_{\text{card}}(C, C_{\text{pk}}) = \frac{\text{HLL}(V_{T,C})}{\text{HLL}(V_{T_{\text{pk}}, C_{\text{pk}}})}$$

$$\phi_{\text{name}}(C, C_{\text{pk}}) = \frac{2 \cdot f(\mathcal{T}_C, \mathcal{T}_{C_{\text{pk}}})}{|\mathcal{T}_C| + |\mathcal{T}_{C_{\text{pk}}}|}.$$

2 Schema-guided prompt design

- Provide **only table headers with schema**
- Explicitly encode **PK-FK relationships** discovered by GRIT
- Transform schema into **LLM-friendly textual representation**

Experiment

Model	Input	Bird		Spider	
		Join-key	Query-key	Join-key	Query-key
<i>Closed-source LLM</i>					
GPT-3.5 Turbo	Header	64.05	59.39	69.81	71.28
	+ GRIT	67.98 (+ 6.14%)	60.74 (+ 2.27%)	73.32 (+ 5.03%)	71.86 (+ 0.82%)
Claude Haiku	Header	64.68	73.12	81.43	79.41
	+ GRIT	73.08 (+ 12.98%)	74.13 (+ 1.38%)	86.22 (+ 5.88%)	82.32 (+ 3.67%)
Claude Sonnet	Header	80.63	74.86	87.06	80.48
	+ GRIT	82.16 (+ 1.90%)	75.33 (+ 0.62%)	89.73 (+ 3.06%)	82.26 (+ 2.21%)
Grok3	Header	78.76	74.38	84.33	80.74
	+ GRIT	79.88 (+ 1.43%)	75.33 (+ 1.28%)	86.55 (+ 2.64%)	81.38 (+ 0.80%)
<i>Open-source LLM</i>					
LLaMA3	Header	24.00	33.77	26.86	52.75
	+ GRIT	34.02 (+ 41.76%)	36.48 (+ 8.03%)	44.95 (+ 67.32%)	55.51 (+ 5.23%)
Mistral	Header	4.28	44.45	19.33	55.62
	+ GRIT	8.63 (+ 101.74%)	48.88 (+ 9.98%)	37.30 (+ 92.95%)	56.86 (+ 2.22%)

Performance comparison of LLMs in table-column retrieval

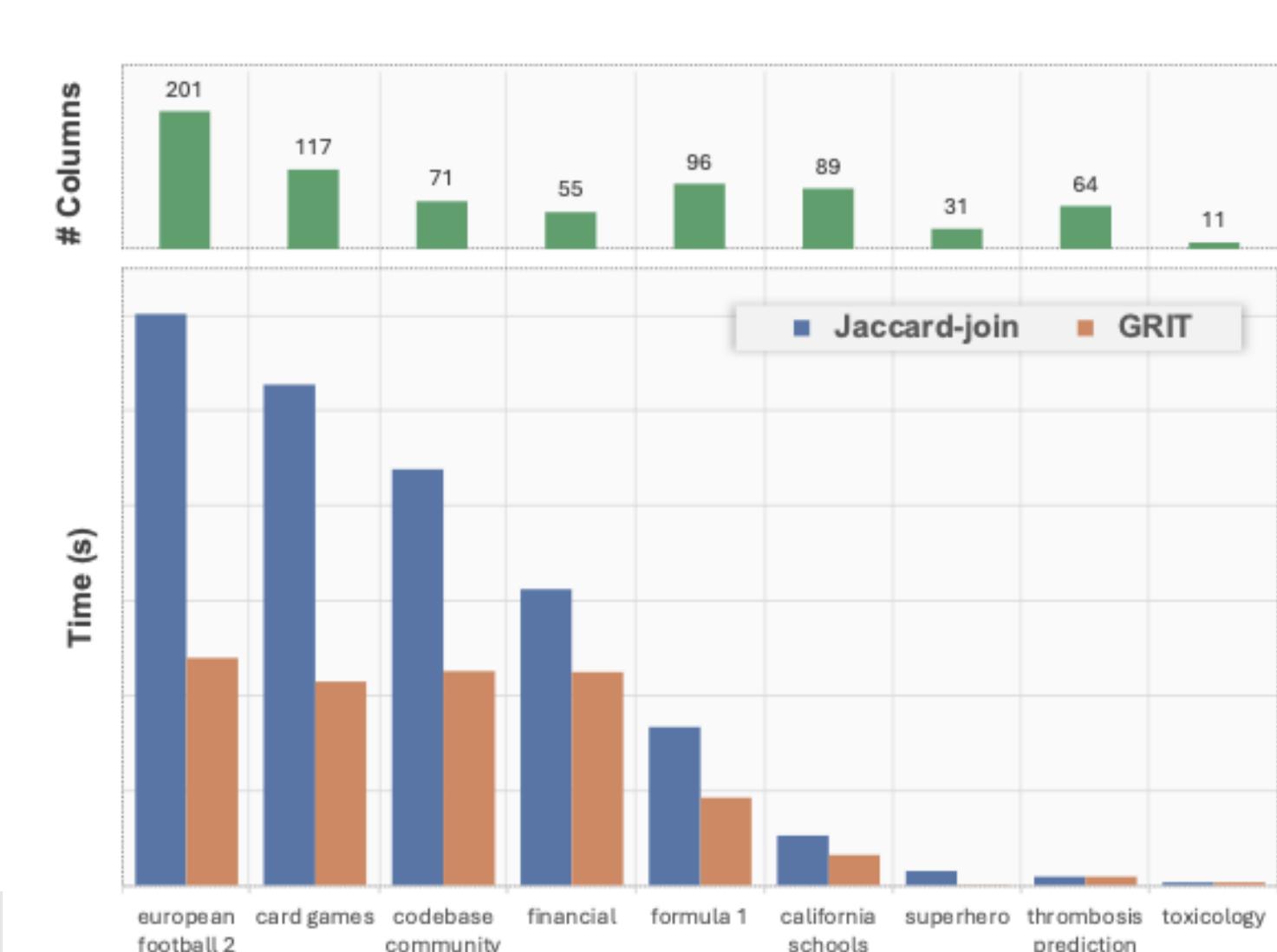
Database	Profile			Efficiency (MB)	
	# Rows	# Columns	# Tables	Jaccard-join	GRIT
financial	1,079,680	55	8	3486.36	26.63 (-99.24%)
card games	803,451	117	6	1881.34	13.63 (-99.28%)
codebase community	740,646	71	8	2107.29	9.80 (-99.53%)
formula 1	514,297	96	13	768.31	11.17 (-98.55%)
debit card specializing	423,051	23	5	1260.92	10.00 (-99.21%)
euopean football 2	222,803	201	7	2613.49	5.75 (-99.78%)
toxicology	49,813	11	4	43.21	0.78 (-98.19%)
california schools	29,941	89	3	232.67	0.76 (-99.67%)
thrombosis prediction	15,952	64	3	101.66	0.52 (-99.49%)
superhero	10,614	31	10	9.03	0.23 (-97.45%)

Memory consumption comparison between Jaccard-join and GRIT

Performance in text-to-SQL task

	Precision	Recall	F1
Primary Key	72.23	99.17	82.19
Foreign Key	95.13	98.85	96.81
$(\phi_{\text{cont}} + \phi_{\text{name}} + \phi_{\text{card}})$	83.85	83.51	82.86
$-\phi_{\text{name}}$	74.36	93.95	80.51
$-\phi_{\text{card}}$	71.59	87.70	76.71

Detection performance of PK and FK



Conclusion

- Proposed **GRIT**, a lightweight hashing-based method for efficient PK-FK detection and schema extraction
- Achieves **higher accuracy** in multi-table reasoning while drastically reducing **time and memory costs**
- Provides **LLM-interpretable prompts** that improve table-column retrieval and text-to-SQL performance across diverse models

Comparison of PF-FK relationship construction time across databases

