GRIT: Guided Relational Integration
for Efficient Multi-Table Understanding

Yujin Kang! Seong Woo Park 2, Yoon-Sik Cho

1Chung-Ang university , 2 Intellivix, Republic of Korea

Motivation

Limited LLM Input size for Multi-table processing

« Multi-table processing requires integrating information from
multiple tables

* Only a portion of the data can be processed when inputting
actual databases

Lack of table structure understanding in LLMs
» Existing LLM training Is primarily based on text data.

* Textis sequential and order-dependent, while tables are
bi-directional and order-independent.

v LLMs cannot process the full scale of large multi-table data

v LLMSs struggle to understand table structures as effectively as text.

Methodology
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Join Key columns

Query: Which year recorded the most gas use paid in EUR? Yearmonth.CustomerID, Customers.Customer|D
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Therefore, to enable effective multi-table reasoning, the information needs

) to be transformed into a text form that LLMs can efficiently interpret.

Let's efficiently extract the relationships among multi-tables and deliver them to the LLM in a form it can easily understand.
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LLM process with GRIT
0 Efficient table relationship discovery via hashing
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Performance comparison of LLMs in table-column retrieval

Dtk Profile Efficiency (MB)
#Rows  #Columns # Tables Jaccard-join GRIT
financial 1,079,680 D 8 3486.36 26.63 (-99.24%)
card games 803,451 117 6 1881.34 13.63 (-99.28%)
codebase community 740,646 71 8 2107.29 9.80 (-99.53%)
formula 1 514,297 96 13 768.31 11.17 (-98.55%)
debit card specializing 423,051 23 5 1260.92 10.00 (-99.21%)
european football 2 222,803 201 7 2613.49 5.75 (-99.78%)
toxicology 49,813 11 4 43.21 0.78 (-98.19%)
california schools 29,941 89 3 23267 0.76 (-99.67%)
thrombosis prediction 15,952 64 3 101.66 0.52 (-99.49%)
superhero 10,614 31 10 9.03 0.23 (-97.45%)

Memory consumption comparison between Jaccard-join and GRIT

Efficient table relationship discovery via hashing

1. Primary key detection

» Use HyperLogLog (HLL) to approximate distinct counts efficiently in large-scale tables

Foreign key detection

To avoid false matches, combine multiple signals:

1) Containment score deon(C,Cpi) = 70> — > UBF(v) =1}
« Use Bloom Filter for efficient membership testing Vrel &

2) Cardinality ratio: unigue(FK) / unique(PK) beana(C, Ci) = HLL(Vr.c)
 Use HyperLogLog to count uniqueness efficiently. HLL (V7,1 Cpc)

2- f(TCa TCpk)

3) Name similarity: token overlap between column names 4 _..(C,Cw) = T
cl+ |/oy

Schema-guided prompt design
* Provide only table headers with schema

« Explicitly encode PK-FK relationships discovered by GRIT

* Transform schema into LLM-friendly textual representation
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Performance in text-to-SQL task

* Achieves higher accuracy in multi-table rea-
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Detection performance of PK and FK :
performance across diverse models
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