' ~ PDF Download
o.) e DIGITAL }
ACM acmopen S 3701716.3715538.pdf
@ LIBRARY C pen> G 02 February 2026
(Ejf;)edcak';gr Total Citations: 2

Total Downloads: 1464

{y Latest updates: https://dl.acm.org/doi/10.1145/3701716.3715538
Published: 08 May 2025

SHORT-PAPER
Leveraging Refined Negative Feedback with LLM for Recommender

Citation in BibTeX format

WWW '25: The ACM Web Conference

Systems 205

April 28 - May 2, 2025
CHANWOO JEONG, Chung-Ang University, Seoul, South Korea Sydney NSW, Australia
YUJIN KANG, Chung-Ang University, Seoul, South Korea gl‘gf/eg;““ Sponsors:

YOON-SIK CHO, Chung-Ang University, Seoul, South Korea

Open Access Support provided by:
Chung-Ang University

WWW '25: Companion Proceedings of the ACM on Web Conference 2025 (May 2025)
https://doi.org/10.1145/3701716.3715538
ISBN: 9798400713316


https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3701716.3715538
https://dl.acm.org/doi/10.1145/3701716.3715538
https://dl.acm.org/doi/10.1145/contrib-99661604320
https://dl.acm.org/doi/10.1145/institution-60014237
https://dl.acm.org/doi/10.1145/contrib-99661605291
https://dl.acm.org/doi/10.1145/institution-60014237
https://dl.acm.org/doi/10.1145/contrib-99660186066
https://dl.acm.org/doi/10.1145/institution-60014237
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60014237
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3701716.3715538&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/thewebconf
https://dl.acm.org/conference/thewebconf
https://dl.acm.org/sig/sigweb
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701716.3715538&domain=pdf&date_stamp=2025-05-23

Leveraging Refined Negative Feedback with LLM
for Recommender Systems

Chanwoo Jeong
Chung-Ang University
Seoul, Republic of Korea
chwchong@cau.ac.kr

Abstract

Recently, there has been growing research on negative feedback in
recommender systems. These studies use a fixed threshold to bina-
rize feedback into positive or negative. However, such an approach
bears limitations when the rating habits for expressing disappoint-
ment differ across users or when ratings are noisy. Motivated by
the remarkable success of Large Language Models (LLMs), we in-
vestigate how LLM can address this challenge on the fly. To this
end, we present ReFINe, Resurrecting Falsely Identified Negative
feedback with LLM. ReFINe classifies the negative feedback into
two distinct types: Falsely identified negative with positive signals
and Confirmed negative with only negative signals. To the best of
our knowledge, our work is the first to propose and demonstrate
the distinction between two perspectives on negative feedback. We
first leverage LLM to better separate between positive and negative
sets for each user, and implement Re-Weighted BPR, a dedicated
Bayesian Personalized Ranking loss function tailored to our per-
spective on negative feedback. Experimental results show that our
model outperforms strong baseline models. The code is available at
https://github.com/Chanwoo-Jeong-2000/ReFINe.

CCS Concepts

« Information systems - Recommender systems.
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1 Introduction

The increasing reliance on online platforms and services has height-
ened the demand for personalized recommendations that align with
users’ unique preferences. While consistent improvement is being
shown in recommender systems, one challenge comes from the data
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Figure 1: Illustration of the movie ratings of user_394 in the
ML-100K dataset. The Star Trek series are highlighted with

. The upper shows classifications from conven-
tional negative feedback, while the lower part represents our
refined results.

preprocessing. Most existing recommender systems employ simpli-
fied implicit data representations that compress user feedback to
binary states. The binary transformation obscures the granularity
of user preference, thereby resulting in significant information loss.
In implicit recommender systems, ratings from 1 to 5 are trans-
formed; ratings of 4 and 5 (positive feedback) are mapped to 1, while
ratings of 1, 2, and 3 (negative feedback) are assigned a value of 0,
the same score value for unrated data. Specifically, implicit recom-
mender systems treat both unrated data and data with negative
feedback identically, resulting in a problem where these cannot be
distinguished at all.

Previous works have pointed out that the negative feedback is
often overlooked and have emphasized the importance of leveraging
such feedback. These studies distinguish the low-rated feedback
from unknown ratings, and utilize negative feedback to model user
dispreferences [1, 5-7, 9]. Specifically, Huang et al. [5] identify the
differences in negative feedback intensity across users, with some
instances showing similarities to positive feedback. Although the
study explores the diversity of negative feedback, it still neglects
subtle distinctions between low-rated responses.

Figure 1 illustrates the movies rated by user_394 in the MovieLens-
100K (ML-100K) dataset, grouped by rating. The user is a big fan
of Sci-Fi, particularly Star Trek, having watched the entire Star
Trek series, as indicated by the posters with a green border in Fig-
ure 1. Despite this clear enthusiasm, three Star Trek movies rated
3 are treated as negative feedback under traditional perspective
of negative feedback (See the upper part of figure). However, we
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can observe from the user’s rating history the strong interest for
Star Trek and clear preference for the Sci-Fi genre. Therefore, we
suggest the possibility that the Star Trek movies categorized as
negative feedback may exhibit positive signals. These observations
highlight the need for a more detailed classification and utilization
of negative feedback.

To address this problem, we propose ReFINe, Resurrecting
Falsely Identified Negative feedback. The conventional approach
uniformly classifies all ratings of 3 or lower as negative feedback.
We raise doubts about the effectiveness of this definition. Thus,
ReFINe redefines negative feedback, considering the intrinsic at-
tributes of individual instances, into two categories: Falsely iden-
tified negative and Confirmed negative. Falsely identified negative
feedback occurs when a user dislikes an item due to specific as-
pects but still finds it relevant to their interests and preferences. In
contrast, confirmed negative feedback represents a case where the
user strongly dislikes the item and does not wish to receive similar
recommendations again. As far as we know, our work is the first
study to propose a novel perspective on negative feedback. Apply-
ing this new perspective, we refine existing data by calibrating user
responses to better reflect their actual preferences. In this process,
ratings are reassigned based on personalized criteria that reflect
individual preferences and history.

Our approach leverages Large Language Model (LLM) to infer
user preferences from their positive feedback and then distinguishes
their negative feedback into falsely identified negative and confirmed
negative. For user_394 mentioned in Figure 1 in the earlier example,
we confirm that the LLM identifies all three Star Trek movies rated
3 as containing positive signals and distinguishes them as falsely
identified negative. Additionally, the other three movies rated 3,
which belong to genres different from movies rated 4 and 5 but
similar to genres of movies rated 1 and 2, are identified as confirmed
negatives. These results confirm that the LLM effectively distin-
guishes the two types of negative feedback we propose (refer to the
lower part of the Figure 1). The falsely identified negatives are no
longer considered negative feedback and should be treated as equiv-
alent to positive feedback. We use this refined feedback to train
the Graph Convolutional Networks (GCNs) model. On the other
hand, confirmed negatives, which contain only negative signals,
are processed using our modified Bayesian Personalized Ranking
(BPR) [8], Re-Weighted BPR, to drive the embeddings of the user and
confirmed negative items further apart in the embedding space. Our
model achieves state-of-the-art performance compared to existing
baselines on three real-world benchmark datasets.

2 Proposed Method

In this section, we introduce our model, ReFINe, which consists
of two modules—data refinement with LLM and training strate-
gies—both leveraging our refined perspective on negative feedback.

2.1 LLM-Driven Strategies for Refining Negative
Feedback
Overlooking subtle distinctions within negative feedback signifi-

cantly constrains the model’s ability to accurately capture users’
preferences. We shed light on such traditional negative feedback
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Rating1 Rating2 Rating3 Rating4  Rating 5

Step 1: Identify the user’s basic preferences

User's Positively Rated Movie List:
The following list includes movie titles and genres that the user has rated positively:

<Troy (genre: Drama|History)>, <The Notebook (genre: Drama|Romance)>, <Anna and the King (genre: Drama
, <Finding

|History|, (genre: ramalFamily)> ... TN

[The list of movies most preferr\ed by the user ]
Step 2: Contrast user preference polarities

Based on the User's Positively Rated Movie List, analyze the user's preferences and patterns.
You will be provided with Candidate List, which includes movie titles and genres that the user
has rated both positively and negatively.

Your task is to strictly select movies and provide only the movie titles from Candidate List
that the user is most likely to have rated positively.

Candidate List:

<The Sisterhood of the Traveling Pants (genre: ComedylDramalRomance)>, <Friday Night Lights (genre: Action
IDramalSport)>, <First Daughter (genre: ComedylRomance)>, <The Music Man (genre: ComedylFamilyMusical
IRomance)>, <50 First Dates (genre: ComedylDramalRomance)>, <Cellular (genre: Actionl/CrimelThriller)>, <A
Very Long (genre:Di yIF r)>, <In America (genre: Drama)>

Output (Answer):
<The Sisterhood of the Traveling Pants>, <First Daughter>, <50 First Dates>, <In America>

Step 3: Request refinement of ambiguous data

Based on the User's Positively Rated Movie List, analyze the user's preferences and patterns.
You will be provi with C. i List, which i movie titles and genres that the user
has rated both positively and negatively.

Your task is to strictly select movies and provide only the movie titles from Candidate List that
the user is most likely to have rated positively.

Candidate List:
<American History X (genre: Drama)>, <Eye for an Eye (genre: Crime|Dramal|Thriller)>, <| Am Sam (genre:
Drama)>, i (genre: Bi i

Output (Answer):

I prompt input % LLM
7

Figure 2: The prompt and inference for user_1502605 from
the Netflix-1M dataset. The prompt consists of three steps,
with bold text indicating the prompt itself and italic text
serving as the input.

<American History X>, <I| Am Sam>

through refined categories: falsely identified negatives and con-
firmed negatives. To effectively distinguish these negatives, we
leverage the versatile LLM, LLaMA2-7B [10]. We design a three-
step prompt strategy to enable LLM to effectively refine negative
feedback.

In the first step, we provide the LLM with movies rated highest
by the user, enabling the model to comprehend the user’s strongest
preferences. In the second step, we present an example consisting
of an instruction, a candidate list containing both preferred and
non-preferred movies, and the corresponding output. By constrain-
ing the output to include only preferred movies among a diverse set
of contrasting options, the LLM effectively discerns detailed user
preferences. In the third step, we employ a similar approach to Step
2, specifically targeting movies within the ambiguous scoring range
of negative feedback as the candidate list for this step. We prompt
the LLM to distinguish between falsely identified negative and con-
firmed negative in the challenging set, using the user preferences.
See Figure 2 for detailed prompt. When prompted, the LLM identi-
fies samples from the candidate list that exhibit relatively positive
signals and classifies them as falsely identified negative. Items not
selected as falsely identified negative are automatically assigned
as confirmed negative. Since these falsely identified negative items
are considered to contain positive aspects, we equate them with
positive feedback.

Some users approach ratings generously, while others apply
much stricter rating criteria; however, this variability has often
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Figure 3: Recall@20 variation across three datasets as the
hyperparameter r varies.

been overlooked in many studies. We acknowledge the significant
variations in rating tendencies among different users by grouping
them based on average ratings: generous raters, who rate 3 or above,
and strict raters, who rate below 3. We tailor the composition of the

candidate lists within prompts according to user rating tendencies.

For generous users, ratings of 2 or lower are considered significantly
low. Therefore, in Step 2, the candidate list includes non-preferred
movies rated 1 or 2. In Step 3, the candidate list is composed solely
of movies rated 3. For strict users, only movies rated 1 are included
in the non-preferred movies for Step 2. Since their average ratings
usually fall in the 2-rating range, we set ambiguous ratings to 2 and
3. Consequently, movies rated 2 and 3 comprise the candidate list
for Step 3. The user in Figure 2 tends to give generous ratings. This
approach significantly enhances the accuracy of negative feedback
refinement.

2.2 Training with Re-Weighted BPR

Our approach to granularizing negative feedback is novel in this
field, therefore requiring a tailored training methodology that can
optimally leverage this perspective. Thus, we design a novel loss
function and apply it to Light GCN [4], a representative GCNs model
for recommender systems. LightGCN uses the following BPR loss
as its loss function:

S —Ino(Jui - guj) + AEQ
(u,i,j)€O

1

Lppr =

Here, #j,; and #j,,j represent the inner products of the embeddings

between user u and item i and j, respectively. E(®) denotes the

embedding of the 0-th layer, and A is the regularization weight.

0 = {(ui,j)|(wi) € R",(u,j) € R™} represents the pairwise
training data. R consists of items that are positively rated by user
u. However, BPR loss in this model treats all items as R, the target
set for negative sampling. For each positive item i, its corresponding
negative item j is uniformly sampled from R, regardless of user

preferences, hence approach hinders accurate preference modeling.

Therefore, in line with our refined feedback interpretation, we
propose Re-Weighted BPR, assigning distinct sampling weight to
items. Unlike the BPR loss that assigns uniform weights to all
items, Re-Weighted BPR assigns a greater weight p to confirmed
negative items and their similar counterparts. Conversely, for users’
positive feedback and falsely identified negative items, we set the
weight to 0. Moreover, for items similar to falsely identified negative
and positive items—those unrated but with high potential user
preference—Re-Weighted BPR allocate a lower weight g. Finally,
the adjusted weights are converted to probability through softmax
function in order to enable weighted negative sampling.

To facilitate learning, we select the top-r items that are unrated
but similar to confirmed negative items, and the top-s items that are
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Table 1: Statistics of the datasets. Ratio denotes negative feed-
back ratio per positive feedback (pos:neg).

Dataset #Users #Items # Ratings Density Ratio
ML-100K 938 1,008 95,215 0.1007 1:0.75
ML-1M 6,034 3,125 994,338 0.0527 1:0.73
Netflix-1M 4,803 5,575 929,436 0.0347 1:0.77

unrated but similar to falsely identified negative and positive items.
To ensure the quality of similar items, we first train our model for ¢
epochs until it becomes reliable, and then integrate these additional
items into the training process. We set the hyperparameters as fol-
lows: p, g, t, and s are 1.5, 0.75, 50, and 5, respectively. r is configured
to 100 for ML-100K, 250 for ML-1M, and 300 for Netflix-1M. Figure
3 presents the results of performance variations with different r
values. As the number of items in the dataset increases, the optimal
r also rises due to more items similar to confirmed negatives.

3 Experiments

3.1 Experimental Setup

Datasets. We experiment with three real-world datasets: ML-100K,
ML-1M, and Netflix-1M. Each dataset contains 1-5 ratings, movie
titles, and genres. Netflix-1M is a subset of the Netflix dataset,
randomly sampled 5,000 users with a fixed seed. These datasets are
preprocessed with a 5-core filter, where users must have rated at
least 5 items positively, and items must have been rated positively
by at least 5 users. For data splitting, positive feedback is divided
into train:validation:test in a 7:1:2 ratio, while all negative feedback
that is unable to serve as ground truth is included in the train set.
Table 1 shows the statistics of each dataset.

Baselines and Metrics. We compare the performance of our
model against the backbone model, LightGCN [4], as well as ex-
isting models designed to leverage negative feedback: SiReN [9],
PANE-GNN (7], SiGRec [5], LSGRec [6], and SIGformer [1]. Light-
GCN serves as a standard framework in the category of GCN-based
methods, known for its simplicity and strong performance. SiReN
is the first graph-based recommendation model to utilize negative
feedback. It trains negative feedback with a Multi-Layer Percep-
tron (MLP) and positive feedback with GCN, integrating the two
through an attention mechanism. PANE-GNN leverages contrastive
learning to train negative feedback, aiming to exclude items the
user is likely to dislike from the recommendation list. SiGRec argues
that negative feedback can be interpreted as positive feedback. This
model proposes mapping the negative embeddings from positive
embeddings using an MLP. LSGRec points out limitations in prior
methods that train positive and negative feedback independently
and proposes a method to model them jointly. SIGformer employs
a transformer architecture to model negative feedback. We adopt
two widely adopted evaluation metrics in recommender systems:
Recall@K and NDCG@K.

Settings. We implement the model with PyTorch Geometric [3].
The batch size is set to 1024, embedding dimension to 64, the num-
ber of layers is 4, learning rate to le-3, and the training runs for 1000
epochs. The model is evaluated on the validation set at each epoch,
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Table 2: Overall performance comparison with baseline models at K=20. RW refers to Re-Weighted BPR. All results are

reproduced using the released codes from the authors.

ML-100K ML-1M Netflix-1M
Model
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

LightGCN siGIR 20 [4] 0.3447 0.2775 0.2561 0.2584 0.1984 0.2128
SiReN IEEE TNNLS 22 [9] 0.4032 0.3397 0.2877 0.3019 0.2383 0.2674
PANE-GNN arXiv'23 [7] 0.3930 0.3294 0.2905 0.3058 0.2383 0.2671
SiGRec 1P&M’23 [5] 0.4187 0.3633 0.2844 0.3153 0.2081 0.2590
LSGRec arXiv24 [6] 0.3755 0.3054 0.2675 0.2758 0.2218 0.2440
SIGformer SIGIR 24 1] 0.4090 0.3410 0.2719 0.2784 0.2161 0.2470
ReFINe w/o RW 0.4194 0.3506 0.2937 0.3013 0.2285 0.2541
ReFINe 0.4296 0.3661 0.3053 0.3196 0.2404 0.2697

(a) ReFINe without RW

.
.
Drama
o e
&
of Adventure:
Sl Sci-Fi

(b) ReFINe

Adventure

Gomedy Sci-Fi
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@ Positive items @ Falsely identified items @ Confirmed items |

Figure 4: Visualization of user_467 in the ML-100K dataset,
comparing ReFINe without RW and with RW.

and early stopping is applied if no improvement in recall@20 is ob-
served over 50 consecutive epochs. The experiments are conducted
using a single NVIDIA RTX A6000 GPU.

3.2 Results

Table 2 shows the efficacy of our method, where ReFINe consis-
tently outperforms the performances of baseline models across
three benchmark datasets; for the baselines, we use the official
codes to reproduce the results. Specifically, our method shows rela-
tively higher performance improvements in the MovieLens (ML)
datasets compared to Netflix. As reviewers in ML left their collected
ratings once in a while not directly after each watching [2], it poten-
tially contains noise in ratings. This noise exacerbates the limitation
of using a fixed threshold for negative feedback, which inherently
overlaps with the positive feedback regime. By effectively distin-
guishing samples that contain positive signals within the negative
feedback, our approach reduces the impact of this noise. Thus, our
method exhibits robustness even in challenging datasets with noise.

We further investigate the impact of Re-Weighted BPR (RW); see
the last two rows in Table 2. RW adjusts the negative sampling
probability based on whether an item is falsely identified negative,
confirmed negative, or positive feedback. When RW is excluded
from ReFINe, samples have uniform sampling probabilities regard-
less of negative intensity, leading to a consistent performance de-
cline. This demonstrates that our redesigned objective effectively
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Table 3: Comparison of ReFINe with other variants using
fixed positive/negative split strategies. ReFINe always ex-
hibits higher performance than the strategies with fixed
thresholds. These results indicate the effectiveness of gener-
ated splits from LLM.

Evaluation Varying Thresholds for Positives

. ReFINe
metric >1 >2 >3 >4

Recall@20 0.4079 0.4194 0.4255 0.4096 0.4296

NDCG@20 0.3387 03473 03561 0.3446 0.3661

distances the confirmed negative samples from the positive regime,
thereby enabling a more accurate representation of user embedding.
We qualitatively analyze the effects of RW in the following section.

3.3 Representation Visualization

We use t-SNE and visualize the learned representations, showing
a selected user and the items the user has rated. From Section 2.1,
we remind the readers that the falsely identified negative items
are resurrected and treated as positive feedback. In Figure 4 (a),
falsely identified negative items are mapped near the user, sharing
similar genres with positive items. However, confirmed negative
items are embedded alongside the falsely identified and positive
items. To mitigate this problem, we leverage our Re-Weighted BPR
(RW), which adjusts probabilities in negative sampling to rede-
fined feedback, proposed in Section 2.2. As a result, Figure 4 (b)
shows that confirmed negative items are distinctly located further
from the user. The results demonstrate the need to adjust negative
sampling probabilities for negative feedback—falsely identified and
confirmed—that exhibit different signals.

3.4 Comparison with Data Refinement Variants

Our approach leverages an LLM to identify falsely identified nega-
tives based on users’ preferences. However, one might question the
LLM'’s effectiveness in discriminating items. To address this con-
cern, we compare the performance of the LLM against rule-based
scenarios where items satisfying specific thresholds are defined as
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positive feedback. In Table 3, we observe that feedback classifica-
tion based solely on rating values consistently results in inferior
results compared to LLM-based refinement (ReFINe). Given the low
likelihood of positive signals in the lowest-rated (rating of 1) items,
using all feedback as positive feedback leads to the worst perfor-
mance. In recommender systems, a threshold of 4 has traditionally
been used to define the range of positive feedback. However, this
conventional criterion leads to performance degradation, while set-
ting the threshold at 3 and above yields the highest performance in
rule-based scenarios. This indicates that potential positive signals
may exist in the intermediate rating range. Thus, we implement the
flexible threshold through LLM that predicts item preferences based
on user history, offering a more fine-grained understanding than a
fixed threshold. Consequently, our ReFINe method demonstrates su-
perior performance, particularly excelling on the NDCG@20 metric,
which represents the quality of ranking.

4 Conclusion

In this paper, we address the challenge posed by existing recom-
mender systems, which simplify user ratings and thereby neglect
the diversity inherent in negative feedback. To address this issue,
we introduce ReFINe, which employs LLMs with user-specific
prompts to accurately distinguish negative feedback: Falsely identi-
fied and Confirmed negative. From our new perspective, we redefine
falsely identified negative items as positive feedback. To maximize
learning effectiveness based on the refined data, we introduce Re-
Weighted BPR loss, which adjusts the probabilities for negative
sampling. Our method achieves superior performance across three
real-world datasets.
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